Bivariate Knop-Sahi and Macdonald polynomials related to q-ultraspherical functions

نویسنده

  • Jennifer Morse
چکیده

ABSTRACT: Knop and Sahi introduced a family of non-homogeneous and nonsymmetric polynomials, Gα(x; q, t), indexed by compositions. An explicit formula for the bivariate Knop-Sahi polynomials reveals a connection between these polynomials and q-special functions. In particular, relations among the q-ultraspherical polynomials of Askey and Ismail, the two variable symmetric and non-symmetric Macdonald polynomials, and the bivariate Knop-Sahi polynomials are explicitly determined using the theory of basic hypergeometric series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursion and Explicit Formulas for Particular N-Variable Knop-Sahi and Macdonald Polynomials

Knop and Sahi simultaneously introduced a family of non-homogeneous, non-symmetric polynomials, Gα(x; q, t). The top homogeneous components of these polynomials are the non-symmetric Macdonald polynomials, Eα(x; q, t). An appropriate Hecke algebra symmetrization of Eα yields the Macdonald polynomials, Pλ(x; q, t). A search for explicit formulas for the polynomials Gα(x; q, t) led to the main re...

متن کامل

A Combinatorial Formula for Non-symmetric Macdonald Polynomials

We give a combinatorial formula for the non-symmetric Macdonald polynomials Eμ(x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials Jμ(x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

2 9 N ov 2 00 6 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

NONSYMMETRIC INTERPOLATION MACDONALD POLYNOMIALS AND gln BASIC HYPERGEOMETRIC SERIES

The Knop–Sahi interpolation Macdonald polynomials are inhomogeneous and nonsymmetric generalisations of the well-known Macdonald polynomials. In this paper we apply the interpolation Macdonald polynomials to study a new type of basic hypergeometric series of type gln. Our main results include a new q-binomial theorem, new q-Gauss sum, and several transformation formulae for gln series.

متن کامل

1 2 Fe b 20 07 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS

We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2000